

Impact of Manure and Cedar Mulch on Crop Production and Soil Properties

Study ID: 0924139201901

County: Pierce

Soil Type: Ortello sandy loam terrace, 0-2% slope

Planting Date: 5/4/19

Harvest Date: 10/26/19

Seeding Rate: 32,000

Row Spacing (in): 30

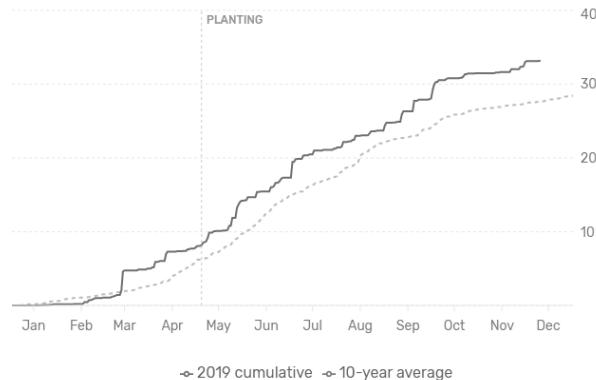
Variety: Pioneer® P1197

Reps: 4

Previous Crop: Soybean

Tillage: No-Till

Herbicides: *Pre:* 2.1 qt/ac Bicep II Magnum®, 1 qt/ac Roundup®, 0.66 pt/ac 2,4-D *Post:* 4 oz/ac Realm® Q, 1 qt/ac Roundup®, 0.5 fl oz/ac Callisto® at V4


Seed Treatment: Poncho® 1250 + VOTiVO®

Foliar Insecticides: 5 fl oz/ac Capture® via chemigation at R1

Foliar Fungicides: 10 fl oz/ac Quilt Xcel®, via chemigation at R2

Irrigation: Pivot, Total: 5.6"

Rainfall (in):

Introduction: In regions of intensive livestock production, such as Nebraska, significant amounts of livestock manure are produced and, at times, underutilized. Manure can be a reliable source of nutrients for crops and it can also positively impact soil health when applied responsibly. Additionally, in Nebraska, populations of eastern redcedar trees (*Juniperus virginiana* L.) have multiplied substantially and are now an invasive species with negative ecological and economic impacts. Identifying alternatives for cedar trees management and utilization has become a priority for multiple agencies in the state. Thus, the goal of this research project was to document the effects of land-applied manure and cedar mulch on agronomic and soil health variables.

On-farm research plots were established near Pierce, NE, using a randomized complete block design with four replications, to test three treatments: (1) commercial fertilizer (control/check), (2) manure and cedar woodchips, and (3) mulch. Plots measured 20-feet in length and 40-feet in width, and corn was planted. This is the first year of a 2-year study.

Treatments and Nutrients Applied:

Check: No organic amendments were applied (no beef slurry). On top of the farmer's fertilization program, 196 lb/ac of 15-23-10 and 27.2 lb/ac of 32-0-4 were applied to balance out the N and P levels, relative to those plots where beef slurry was applied ("Manure" and "Manure + Woodchips" treatments).

Manure + Woodchips: This treatment received an average of 5,700 gal/ac of beef slurry on April 19, 2019, and 10 ton/ac of cedar woodchips applied on May 24, 2019 (both surface applications).

Manure: The manure treatment was beef slurry applied at an average of 5,700 gal/ac on April 19, 2019 (surface application).

All treatments received the following application as part of the farmer's fertilization program: 200 lb/ac 8-20-5-5S-0.5zn at planting, 80 lb N/ac as ESN slow release (44% N) at V1, 75 lb N/ac as 30-0-0 2S at V6 via coulter injected sidedress, 35 lb N/ac as 30-0-0 2S at V10 via fertigation, 25 lb N/ac as 30-0-0 2S at V16 via fertigation, and 25 lb N/ac as 30-0-0 2S at R2 via fertigation.

Total nutrients received by treatment*				
	Nitrogen (lb N/ac)	Phosphorous (lb P ₂ O ₅ /ac)	Potassium (lb K ₂ O/ac)	Sulfur (lb S/ac)
Check	294	85	31	15
Manure + Woodchips	292	83	136	20
Manure	292	83	136	20

*Includes total nutrients from organic (manure) and inorganic (commercial fertilizers) sources.

Methods: For bulk density, a total of three samples were taken in three different rows within each rep (0-2" and 2-4"), and averaged. Sorptivity was also measured; sorptivity corresponds to the initial water infiltration in the soil, which is especially relevant to water capture in the soil profile. The higher a sorptivity value, the better the infiltration of the water in the system. For sorptivity, five measurements were made within each replication to a depth of 2.5 cm (~1.0 in), covering at least three different rows. One cm (~0.4 in) of water was poured in the ring and the period of time for infiltration to occur was timed with a stopwatch. For the chemical analysis in the top soil layers, approximately 15 random cores were taken within each plot, and composited in two depths (0-4" and 4-8"). For deeper layers, a total of three cores were randomly taken within each plot and composited in two depths (8-20" and 20-36"). All samples and measurements were taken after harvest, on November 9, 2019.

Results:

	Yield (bu/ac)†	Bulk Density (g/cm ³)		Sorptivity (cm s ^{-1/2})		OM (%)	
		(0-2")	(2-4")	(0-4")	(4-8")	(0-4")	(4-8")
Check	248 A*	2 A	2 A	0.14 A	1.40 A	0.80 B	
Manure	241 A	2 A	2 A	0.17 A	1.70 A	1.03 A	
Manure + Woodchips	238 A	2 A	2 A	0.19 A	1.65 A	0.88 AB	
P-Value	0.562	0.555	0.831	0.195	0.149	0.084	
Soil Nitrate (ppm)							
	(0-4")	(4-8")	(8-20")	(20-36")	(0-4")	(4-8")	Soil K (ppm)
Check	11.1 A	7.1 B	6 A	11 A	39 A	36 A	148 B
Manure	19.6 A	15.0 A	7 A	4 A	50 A	45 A	255 A
Manure + Woodchips	18.1 A	8.5 B	6 A	6 A	42 A	29 A	223 A
P-Value	0.270	0.045	0.709	0.263	0.471	0.193	0.015
(4-8")							
							130 B
							198 A
							130 B
							0.010

*Values with the same letter are not significantly different at a 90% confidence level.

†Bushels per acre not adjusted for moisture.

Summary:

- There was no yield difference between the treatments evaluated.
- Soil measurements for K and N from (4-8") were higher for the beef slurry treatment. Soil K was also higher in the 0-4" layer for the manure and manure + woodchips treatments.

This work is supported by the Daugherty Water for Food Global Institute, the Nebraska Department of Environment and Energy, and The Nebraska Environmental Trust, Project 18-203: Transforming Manure and Cedar Mulch from "Waste" to "Worth".

Sponsored by:

In Partnership with:

