

Impact of N-Serve® with Anhydrous Ammonia Application

Study ID: 0718185201901

County: York

Soil Type: Hastings silt loam, 0-1% slopes; Uly-Hobbs silt loams, 11-30% slopes

Planting Date: 4/24/19

Harvest Date: 10/22/19

Seeding Rate: 32,000

Row Spacing (in): 30

Variety: Pioneer® P1563AM™

Reps: 7

Previous Crop: Soybean

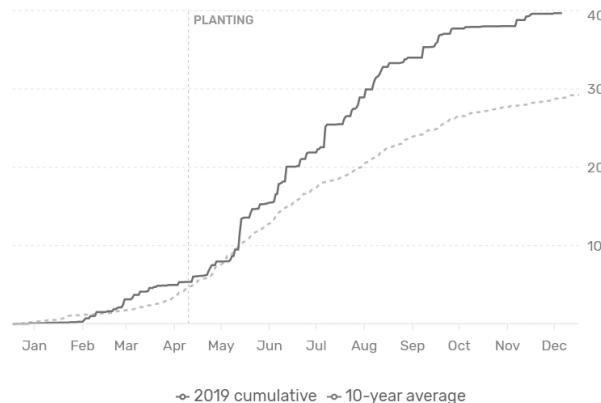
Tillage: No-Till

Herbicides: Pre: 2 qt/ac Medal® II ATZ and 5 oz/ac Explorer™ on 4/23/19

Seed Treatment: None

Foliar Insecticides: 6.4 oz/ac Tundra® EC on 8/4/19

Foliar Fungicides: 8 oz/ac Delaro® on 8/4/19


Introduction: N-Serve® by Corteva Agriscience™, is a product with known efficacy for inhibiting nitrification (product information is provided at right). The chemical compound nitrapyrin in N-Serve® temporarily inhibits populations of the bacteria that convert ammonium to nitrite (*Nitrosomonas*) and nitrite to nitrate (*Nitrobacter*). These compounds protect against both denitrification and leaching by retaining fertilizer N in the ammonium form. Ammonium (NH_4^+) is a positively charged ion (cation) that can be held on negatively charged exchange sites in soils (such as in clays and organic matter); in comparison, nitrate (NO_3^-), which is negatively charged, can be converted to nitrous oxide (N_2O) or nitrogen gas (N_2) in waterlogged conditions, or can leach below the root zone with rain in well drained soils. You can learn more about nitrogen inhibitors at <https://cropwatch.unl.edu/2019/nitrogen-inhibitors-improved-fertilizer-use-efficiency>.

The purpose of this study was to evaluate the impact of N-Serve® applied with anhydrous ammonia on crop yield and soil ammonium and nitrate. Anhydrous ammonia was applied at a rate of 180 lb N/ac on April 10, 2019 on ridge-tilled ground following a previous crop of soybeans. The study compared 180 lb N/ac with no inhibitor versus 180 lb N/ac with 1 qt/ac N-Serve® (recommended rate). Soil samples were taken on June 17 in V6-V7 corn. Corn was planted 5" off the anhydrous band and soil samples were collected 2" from the anhydrous band at 1', 2', and 3' depths in both the N-Serve® treatment and check in three replications of the study. Soil samples were analyzed for ammonium-N and nitrate-N.

Fertilizer: 180 lb/ac N as spring applied anhydrous ammonia on 4/10/19; 5 gal/ac 10-34-0 in-furrow 4/23/19

Irrigation: Pivot, Total: 1"

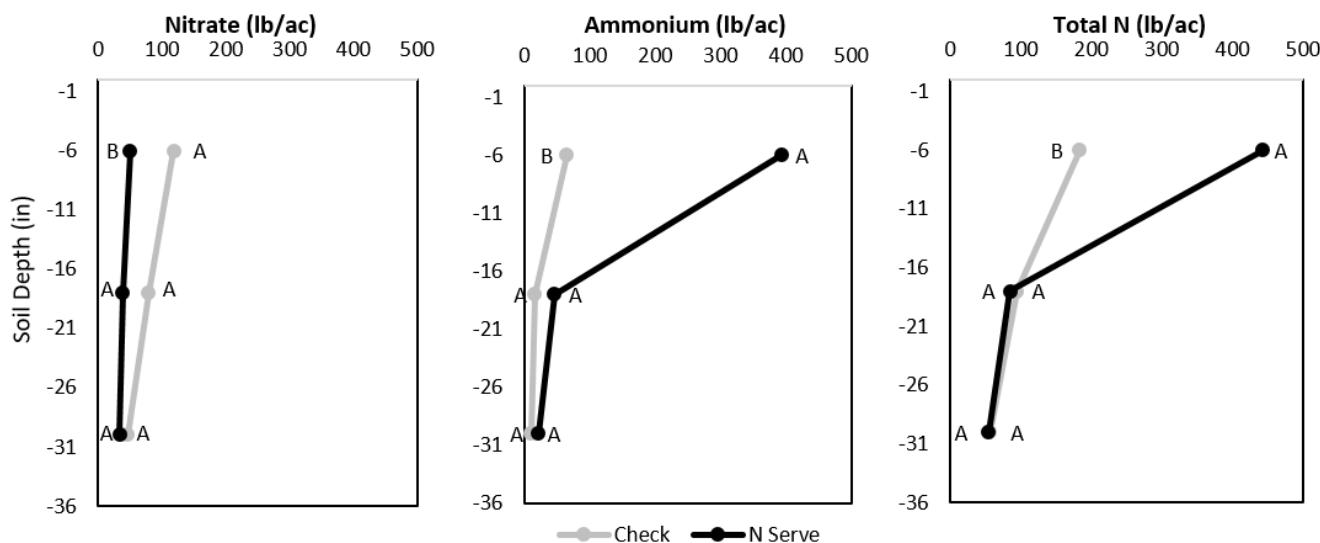
Rainfall (in):

N-Serve® 24
Optinyte™ technology

NITROGEN STABILIZER

®TM Trademarks of Dow AgroSciences, DuPont or Pioneer and their affiliated companies or respective owners

Use to delay nitrification of ammoniacal and urea nitrogen fertilizer compositions in the soil by controlling the nitrification process.


Active Ingredients:	nitrapyrin: 2-chloro-6-(trichloromethyl)pyridine.....	22.2%
Other Ingredients	77.8%
Total	100.0%

Contains petroleum distillates

Contains 2 lb of active ingredients per gallon.

Product information from: https://s3-us-west-1.amazonaws.com/agrian-cg-fs1-production/pdfs/N-Serve_24_Label1d.pdf

Results:

Figure 1. Soil ammonium-N and nitrate-N for check (180 lb N/ac anhydrous ammonia with no inhibitor) and N-Serve (180 lb N/ac anhydrous ammonia with 1 qt/ac N-Serve inhibitor) treatments on June 17 at 1', 2', and 3' depths. Within a sampling depth, points with the same letter are not statistically different at the alpha=0.1 level.

	Stand Count (plants/ac)	Stalk Rot (%)	Moisture (%)	Yield (bu/ac)†	Marginal Net Return‡ (\$/ac)
Check	32,500 A*	13.21 A	17.9 A	250 A	957.74 A
N-Serve®	31,750 A	7.14 A	18.0 A	251 A	949.65 B
P-Value	0.182	0.190	0.436	0.370	0.036

*Values with the same letter are not significantly different at a 90% confidence level.

†Bushels per acre adjusted to 15.5% moisture.

‡Marginal net return based on \$3.83/bu corn and \$11/ac (\$47.95/gal) for N-Serve.

Summary:

- Soil samples in the top foot showed greater ammonium concentration where N-Serve® was used and lower nitrate concentration (Figure 1). This indicates that N-Serve® was slowing the conversion of ammonium to nitrate at the time of soil sampling (9 weeks after application). Deeper sampling depths did not show differences between the treatments.
- There were no differences in stand counts, stalk rot, grain moisture, or yield. Marginal net return was significantly lower for the N-Serve® treatment as additional product cost were not offset by an increase in yield.
- Agronomic benefits for a nitrification inhibitor may not be realized every year as rainfall dictates whether nitrogen will be leached, volatilized, or denitrified. This study will be conducted again in 2020.

Sponsored by:

In Partnership with:

