

Xanthion™ Fungicide on Corn

Study ID: 032035201504

County: Clay

Soil Type: Hastings silt loam; Hastings silty clay loam;

Planting Date: 4/15/15

Harvest Date: 10/14/2015

Population: 33,000

Row Spacing (in.) 30

Hybrid: Mycogen 2Y767

Reps: 6

Previous Crop: Soybean

Tillage: Conventional Till

Herbicides: *Pre:* 1.5 qt/ac. Lexar *Post:* Unknown

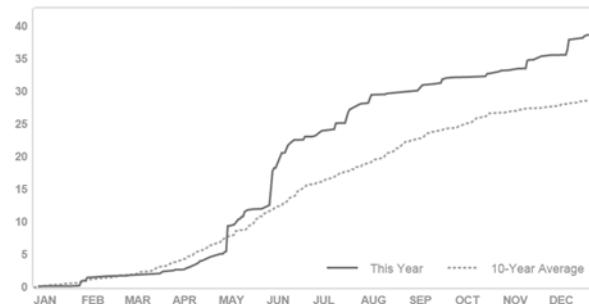
Seed Treatment: Unknown

Insecticides: 6 oz/ac Capture LFR soil applied

Foliar Fungicides: 10.5 oz/ac Quilt Xcel

Fertilizer: 11-52-0, zone applied, fall application;

180 lb. actual N/ac, fall application;


30 lb. actual N/ac, spring application;

20 lb. actual N/ac, foliar, spring application.

Note: June 4, Hail, 35% damage

Irrigation: Pivot, Total: 5.0"

Rainfall (in.):

Introduction: Xanthion™ is an in-furrow fungicide (product ingredient information at right). The product was evaluated at planting with the starter fertilizer application. The check treatment was the grower's standard starter fertilizer - 3 gal 6-24-6 with 1 qt/acre micromax (2% Magnesium, 0.25% B, 2% Zn, 1.6% Fe, 0.5%Cu). To test the effect of Xanthion™ 1.2 fl oz Component A and 6.0 fl oz of Component B were added to the standard starter treatment.

Xanthion™ In-furrow fungicide

For soilborne/seedling disease control and plant health using in-furrow applications to corn (field and sweet)

Active Ingredient: (Component A)
Bacillus subtilis, strain MBI 600* 5.00%
Other Ingredients: 95.00%

Total: 100.00%

* Contains not less than 2.2×10^{10} viable spores per mL

Active Ingredient*: (Component B)
pyraclostrobin: (carbamic acid, [2-[[1-(4-chlorophenyl)-1H-pyrazol-3-yl]oxy]methyl]phenyl)methoxy-, methyl ester) 23.60%
Other Ingredients**: 76.40%

Total: 100.00%

* Equivalent to 2.09 pounds of pyraclostrobin per gallon

** Contains petroleum distillates

EPA Reg. No. 7969-368

EPA Est. No.

Product information from: <http://www.cdms.net/ldat/ldC3D006.pdf>

Results:	Yield (bu/ac)†	Moisture (%)	Harvest Stand Count	Stalk Rot (%)	Marginal Net Return (\$/ac)‡
Starter (3 gal 6-24-6 + 1 qt Micromax)	230 A	16.0 A	30,800 A	9 A	839.50
Starter + Xanthion	233 A*	16.0 A	29,200 A	4 A	841.24
<i>P-Value</i>	0.2359	0.892	0.4716	0.298	N/A

†Bushels per acre corrected to 15.5% moisture.

*Values with the same letter are not significantly different at a 90% confidence level.

‡Net Return based on \$3.65/bu corn and \$9.21/ac Xanthion™ treatment.

Summary: There was no yield, moisture, stand count, or stalk rot difference between the standard starter fertilizer treatment and the starter fertilizer plus Xanthion™

In Partnership with:

Extension is a Division of the Institute of Agriculture and Natural Resources at the University of Nebraska-Lincoln cooperating with the Counties and the United States Department of Agriculture. University of Nebraska-Lincoln Extension educational programs abide with the nondiscrimination policies of the University of Nebraska-Lincoln and the United States Department of Agriculture.